The correct options are
A a=π6
D b=−π12.
We apply the test of continuity atx=π/4 and x=π/2 to get the values of a and b.
At x=π/4, we have f(π4)=2,π4cotπ4+b=π2+b
f(π4−0)=limh→0[π4−h+a√2sin(π4−h)] =π4+a√2.1√(2)=a+π4 and f(π4+0)=limh→0[2(π4+h)cot(π4+h)+b] =π2.1+b=π2+b.
∴ For continuity at x=π/4, we have π2+b=a+π4ora−b=π4....(1)
At x=π/2, we have f(π2)=2.π2cotπ2+b=b
f(π2+0)=limh→0[2(π2+h)cot(π2−h)+b]=b f(π2+0)=limh→0[acos2(π2+h)−bsin(π2+h)] =−a−b. ∴
For continulity at x=π/2, we have b=−a−bora+2b=0...(2)
Solving (1)and(2),we get a=π6,b=−π12.
Ans: A,B