p(x)=x3+ax2−13x+b
as (x−1) is factor of p(x)
so p(1)=0
13+a(1)−13(1)+b=0
a+b−12=0
a+b=12.......(1)
∴x−3 is factor of p(x)
so, p(3)=0
33+a(3)2−13×3+b=0
27+9a−39+b=0
9a+b=12.......(2)
Solving (1)&(2)
a+b=12
−9a+b=12–––––––––––––––––
−8a=0––––––––––
⇒a=0
Putting equation (1)
0+b=12⇒b=12