Find the values of ′a′ and ′b′ so that (x+1) and (x−1) are factors of x4+ax3−3x2+2x+b
Let f(x)=x4+ax3−3x2+2x+b
When x+1 is a factor of f(x), then f(−1)=0
∴f(−1)=0
(−1)4+a(−1)3−3(−1)2+2(−1)+b=0
1−a−3−2+b=0
∴ −4−a+b=0
⇒ −a+b=4..........(i)
Again, When x−1 is a factor of f(x), then f(1)=0
∴f(1)=0
⇒(1)4+a(1)3−3(1)2+2×1+b=0
⇒1+a−3+2+b=0
⇒a+b=0..........(ii)
Adding equation (i) and (ii), we have
2b=4
⇒b=42=2
From equation (ii), a+2=0
⇒a=−2
∴ a=−2,b=2