Find the values of a and b such that the function defined by f(x)=⎧⎪⎨⎪⎩5, if x≤2ax+b, if 2<x<1021, if x≥10 is a continuous function.
Here, f(x)= ⎧⎪⎨⎪⎩5, if x≤2ax+b, if 2<x<1021, if x≥10
At x=2, LHL=limx→2−f(x)=limx→2−(5)=5
RHL = limx→2+f(x)=limx→2+(ax+b)
Putting x=2+h as x→2+ when h→0
∴limh→0[a(2+h)+b]=limh→0(2a+ah+b)=2a+b
Also, f(2)=5
Since, f(x) is continuous at x=2.
LHL = RHL = f(2)⇒ 2a+b=5 ....(i)
At x = 10, LHL=limx→10−f(x)=limx→10−(ax+b)
Putting x=10-h as x→10− when h→0
∴limh→0[a(10−h)+b]=limh→0(10a+ah+b)=10a+b
RHL = limx→10+f(x)=limx→10+(21)=21
Als, f(10)=21
Since, f(x) is continuous at x=10.
LHL=RHL =f(10)⇒ 10a+b=21 ......(ii)
Subtracting Eq. (i) from Eq (ii), we get 8a = 16 ⇒ a=2
Put a=2 in Eq. (i), we get 2×2+b=5⇒b=1