Given definition of f is f(x)=⎧⎨⎩5,ifx≤2ax+b,if2<x<1021,ifx≥10 .....(1)
Also, given f(x) is a continuous function.
So, f(x) is continuous at all points .
So, f(x) is continuous at x=2
⇒limx→2−f(x)=limx→2+f(x)=f(2) ....(2)
Now, RHL=limx→2+f(x)
=limh→0f(2+h)
=limh→0a(2+h)+b
⇒RHL=2a+b
Also, f(2)=5
Substituting these values in (2), we get
2a+b=5 .......(3)
Also, f(x) is continuous at x=10
∴limx→10−f(x)=limx→10+f(x)=f(10) ......(4)
Now, LHL=limx→10−f(x)
=limh→0f(10−h)
=limh→0a(10−h)+b
=10a+b
Also, by (1), f(10)=21
Substituting these values in eq (4), we get
10a+b=21 .....(5)
Solving eq (3) from eqn (5), we get
8a=16
⇒a=2
Put this value in (3), we get
2(2)+b=5
⇒b=1