Simplification of given data:
Given:
[2a+ba−2b5c−d4c+3d]=[4−31124]
Comparing corresponding elements, we get
2a+b=4 ⋯(1)
5c−d=11 ⋯(2)
a−2b=−3 ⋯(3)
4c+3d=24 ⋯(4)
Solving equation (1)
2a+b=4⇒b=4−2a
Putting values of b in equation (3)
a−2b=−3
⇒a−2(4−2a)=−3
⇒a−8+4a=−3
⇒a+4a=−3+8
⇒5a=5
⇒a=1
Putting a=1 in equation (1)
2a+b=4
⇒2(1)+b=4
⇒2+b=4
⇒b=2
From equation (2),
5c−d=11
⇒5c=11+d
⇒5c−11=d
⇒d=5c−11
Putting values of d in equation (4)
4c+3d=24
⇒4d+3(5c−11)=24
⇒4c+15c−33=24
⇒19c−33=24
⇒19c=24+33
⇒19c=57
⇒c=3
Putting c=3 in equation (2)
⇒d=5(3)−11
⇒d=4
∴a=1,b=2,c=3 and d=4