The correct option is C a=−87 & b=−67
Given, 4a+b+2a−b=51a+b+1a−b=3
Lets take x=1a+b; y=1a−b
4x+2y=5−−−−(i)x+y=3−−−−(ii)
Multiply (ii) by 2
2x+2y=6−−−−(iii)
Substract (iii) from (i)
4x+2y= 5−2x±2y=−6–––––––––––––––– 2x=−1⇒x=−12
Substitute x in (ii)
−12+y=3⇒y=72 ∴1a+b=−12; 1a−b=722=−1(a+b)⇒−a−b=2−−−(iv)2=7(a−b)⇒7a−7b=2−−−(v)
Multiply (iv) with 7
We get −7a−7b=14−−−(vi)
Add (v) & (vi)
7a−7b=2−7a−7b=14–––––––––––––––– −14b=16⇒b=−87
Substitute b in (v)
7a−7×−87=2⇒a=−67