Find the values of each of the following correct to three places of decimals, it being given that √2=1.4142, √3=1.732, √5=2.2360, √6=2.4492 and √10=3.162.
(i) 3−√53+2√5
(ii) 1+√23−2√2
√2=1.4142, √3=1.732, √5=2.2360, √6=2.4495 and √10=3.162
(i) 3−√53+2√5=(3−√5)(3−2√5)(3+2√5)(3−2√5)
(Rationalising the denominator)
=9−6√5−3√5+2×5(3)2−(2√5)2=9+10−9√59−20
=19−9√5−11=19−9×2.2360−11
=19−20.124−11=−1.124−11=0.102
(ii) 1+√23−2√2=(1+√2)(3+2√2)(3−2√2)(3+2√2)
(Rationalising the denominator)
=3+2√2+3√2+2×2(3)2−(2√2)2=3+4+5√29−8
=7+5√21=7+5(1.4142)
=7+7.0710=14.071