The correct option is
C k=−3,5Given quadratic equation is
4x2−2(k+1)x+(k+4)=0Now given that the roots are equal and zero.
For a quadratic equation ax2+bx+c=0 roots are real and equal, if
D=b2−4ac
Here, a=4,b=−2(k+1),c=(k+4)
Therefore, D=b2−4ac
⇒[−2(k+1)]2−4×4×(k+4)=0
⇒4(k2+2k+1)−16k−64=0
⇒k2+2k+1−4k−16=0
⇒k2−2k−15=0
⇒k2−5k+3k−15=0
⇒k(k−5)+3(k−5)=0
⇒(k−5)(k+3)=0
⇒k=5 and k=−3