Given Quadratic equation is 2x2−(k−2)x+1=0
Now, given that the roots are equal and real.
For
a quadratic equation ax2+bx+c=0, roots are real and equal if
D=b2−4ac=0.
Here, a=2,b=−(k−2),c=1
Therefore, D=b2−4ac=0
⇒(−(k−2))2−4×2×1=0
⇒k2−2k×2+4−8=0
⇒k2−4k−4=0
This
is a quadratic equation whose roots are
⇒k=−(−4)±√(−4)2−4×1×(−4)2×1
⇒k=4±√16+162
⇒k=4±√322
⇒k=4±4√22
⇒k=4(1±√2)2
⇒k=2±2√2