Given, the points A(k+1,2k),B(3k,2k+3) and C(5k-1,5k) are collinear.
∵ The point to be collinear.
∴x1(y2−y3)+x2(y3−y1)+x3(y1−y2)=0
(k+1)(2k+3-5k)+3k(5k-2k)+(5k-1)(2k-2k-3)=0
(k+1)(3-3k)+3k(3k)+(5k-1)(-3)=0
3k+3−3k2−3k+9k2−15k+3=0
6k2−15k+6=0
2k2−5k+2=0
2k2−4k−k+2=0
2k(k-2)-1(k-2)=0
(2k-1)(k-2)=0
k=12 or k=2
Hence,k=12 or k=2.