The vertices of the given △ ABC are A(1,-1), B(-4,2k) and C(-k,-5)
∴ Area of △ABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
=12[1(2k+5)+(−4)(−5+1)+(−k)(−1−2k)]
=12[2k+5+16+k+2k2]
=12[2k2+3k+21]
Area of △ABC =24 sq.units (Given)
∴ 12[2k2+3k+21]=24
⇒ 2k2+3k+21=48
⇒ 2k2+3k−27=0
⇒ 2k2+9k−6k−27=0
⇒ k(2k+9)−3(2k+9)=0
⇒ (k−3)(2k+9)=0
k = 3 or -92
Hence, k = 3 or -92