Given: Quadratic equation is 3x2+mx+2=0
We know that, for equal roots of ax2+bx+c=0, its discriminant(D) is zero
Discriminant(D)=b2−4ac=0
Here, a=3,b=m,c=2
⇒D=m2−4×3×2=0
⇒m2=24
⇒m=±2√6
Putting m=2√6 in the given equation, it becomes
3x2+2√6x+2=0
⇒(√3x+√2)2=0
{∵a2+2ab+b2=(a+b)2}
⇒x=−√2√3=−√2√3×√3√3=−√63
When m=−2√6, equation becomes 3x2−2√6x+2=0
⇒(√3x−√2)2=0
{∵a2−2ab+b2=(a−b)2}
⇒x=√2√3=√2√3×√3√3=√63
∴ For m=2√6,x=−√63 and for m=−2√6,x=√63