The correct option is B {1}
Given: x4−(1−2m)x2+(m2−1)=0 has three real distinct root.
To find: Value of m.
Step-1: Assume x2=t
Step-2: Find the roots in term of t1,t2.
Step-3: Write the applicable conditions.
Step-4: Solve all the conditions and combine all the results for m.
Let, x2=t
⇒t2−(1−2m)t+(m2−1)=0
Roots x1,x2,x3,x4 are transformed to roots t1,t2.
x2=t⇒x=±√t
∴ Four roots will be
x1=+√t1,x2=+√t2,x3=−√t1,x4=−√t2.
Applicable Conditions :
i) D>0
ii) t2=0
iii) For t1>0,−b2a>0
Now, solve all conditions,
i) D>0
⇒(1−2m)2−4.1.(m2−1)
⇒−4m+5>0
⇒4m<5⇒m<54
∴m∈(−∞,54)=A
ii) t2=0
For three real distinct roots, either t1 or t2 should be zero. So, here we are taking t2=0
⇒m2−1=0⇒m=±1=B
iii) For t1>0,−b2a>0
⇒−1−2m2>0
⇒1−2m<0⇒2m>1⇒m>12
∴m∈(12,∞)=C
∴ Set of possible value of m, is A∩B∩C=(−∞,54)∩{−1,1}∩(12,∞)={1}
i.e, m={1}