Find the values of m for which the roots of quadratic equation x2 - (m - 3) x + m = 0 lies between 1 and 2.
m ϵ ϕ
Let f(x) = x2 - (m - 3) x + m
Visualizing using graph the given conditions are represented as,
Observe that i) f(1) > 0, f(2) > 0
ii) 1 < (−b)2a < 2
iii) Also D ≥ 0 for roots to be real
i) f(1) =1 - (m - 3) + m = 4 > 0 (Always true)
f(2) = 4 - 2 (m - 3) + m = 4 - 2m + 6 + m = 10 - m > 0
m < 10 ------------- (1)
ii) 1 < [(m-3)/2] < 2 ⇒ 2 < m - 3 < 4
5 < m < 7 ------------ (2)
iii) D ≥ 0 ⇒ (m−3)2 - 4 m ≥ 0 ⇒ m2 + 9 - 6m - 4m ≥ 0
m2 - 10m + 9 ≥ 0
m2 - 9m - m + 9 ≥ 0
m(m - 9) -1(m - 9) ≥ 0
m ≤ 1 (or) m ≥ 9 ----------- (3)
Intersection of (1), (2) & (3) have no values of m in common.
So, m ϵ ϕ