wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the values of n in each of the following:
(i) 52n×53=511
(ii) 9×3n=37
(iii) 8× 2n+2=32
(iv) 72n+1÷49=73
(v) 324×325=322n+1
(vi) 2310+3225=252n-2

Open in App
Solution

We have

(i) 52n x 53 = 511
= 52n+3 = 511
On equating the coefficients, we get
2n + 3 = 11
⇒2n = 11- 3
⇒2n = 8
⇒ n =82=4
(ii) 9 x 3n = 37
= (3)2 x 3n = 37
= (3)2+n = 37
On equating the coefficients, we get
2 + n = 7
⇒ n = 7 - 2 = 5

(iii) 8 x 2n+2 = 32
= (2)3 x 2n+2 = (2)5 [since 23 = 8 and 25 = 32]
= (2)3+n+2 = (2)5
On equating the coefficients, we get
3 + n + 2 = 5
⇒ n + 5 = 5
⇒ n = 5 -5
⇒ n = 0

(iv) 72n+1 ÷ 49 = 73
= 72n+1 ÷ 72 = 73 [since 49 = 72]
=72n+172=73
=72n+1-2=73 [since aman=am-n]
= 72n-1 =73
On equating the coefficients, we get
2n - 1 = 3
⇒ 2n = 3 + 1
⇒ 2n = 4
⇒ n = 42=2
(v) 324×325=322n+1
=32(4+5)=32(2n+1)
=329=322n+1
On equating the coefficients, we get
2n + 1 = 9
⇒ 2n = 9 - 1
⇒ 2n = 8
⇒ n =82=4
(vi) 2310×3225=252n-2
=2310×3210=252n-2
=210×310310×210=252n-2
=1=252n-2
=250=252n-2 [since 250=1]
On equating the coefficients, we get
⇒ 0 = 2n - 2
⇒ 2n = 2
⇒ n = 22=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Forming equation from solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon