Step 1: Solve for value of sinx
We know that sin2x+cos2x=1
⇒sin2x+(−12)2=1
⇒sin2x+14=1
⇒sin2x=1−14=34
⇒sinx=±√32
Since x is in third quadrant, sinx is negative.
∴sinx=−√32
Step 2: Solve for value of cosec x
We know, cosec x=1sinx
∴cosec x=1−√32=−2√3
Step 3: Solve for value of tanx
We know that tanx=sinxcosx
∴tanx=(−√32)(−12)=√3
Step 4: Solve for value of cotx
We know that cotx=1tanx
∴cotx=1√3
Step 5: Solve for value of secx
We know that secx=1cosx
∴secx=1(−12)=−2