Find the values of 't' in the equation x2 - 2tx + t2 - 1 = 0 such that exactly one root lies in between the numbers 2 and 4, and no root of the equation is either 2 (or) 4.
1 < t < 3 and 3 < t < 5
Comparing f(x) = x2 - 2tx + t2 - 1 to ax2 + bx + c,
a = 1, b = -2t, c = t2 - 1
As a > 0, graph of f(x) is upward(cup shaped) parabola
For roots to be real, b2 - 4ac > 0
⇒ 4t2 - 4(t2 - 1) > 0
4 > 0 [Always true]
Observe from the graph that f(2) > 0 and f(4) < 0.
Hence f(2) f(4) < 0 ------------- (1)
Also, for root ≠ +2 (or) 4, f(2) ≠ 0 and f(4) ≠ 0 ---------- (2)
(1) ⇒ f(2) f(4) < 0
[4 - 4t + (t2 - 1)][16 - 8t + t2 - 1] < 0
⇒ (t2 - 4t + 3) (t2 - 8t + 15) < 0
⇒ (t - 1) (t - 3) (t - 3) (t - 5) < 0
⇒ (t−3)2 (t - 1) (t - 5) < 0
⇒ t ϵ (1, 5)
(2) ⇒ f(2) ≠ 0
⇒ t ≠ 1, 3
(3) ⇒f(4) ≠ 0 ⇒ t ≠ 3, 5
So, t ϵ (1, 5) - {3}