Find the values of the following questions:
cos−1(12)+2sin−1(12)
We can find the value of given expression by simplifying the individual terms.
Let cos−1(12)=x⇒cos x=12=cosπ3
⇒ x=π3ϵ[0,π] [principal interval]
Again, let sin−1(12)=y⇒sin y=12=sinπ6
⇒ y=π6ε[−π2,π2] (principal interval)
∴ cos−1(12)+2sin−1(12)=x+2y=π3+2×π6=2π3