Find the values of x for which A sin2x is minimum and Maximum. A is some positive constant.
Maxima: x=(2N+1)π2
y=Asin2x
For minima For maxima
dydx=0dydx=0
d2ydx2>0d2ydx2<0
dydx=2A sinxcosx=A sin2x(Chainrule)
⇒Asin2x=0
⇒2x=nπ
⇒x=nπ2 where n=0,1,2,.......
So minima and maxima occur at these points 0,π2,π,3π2,2π.....
d2ydx2>0 for minima
2Acos2x > 0 putting value of x
cos2(nπ2)>0
cosnπ>0
only possible when n is even or n=2N
so at x=2Nπ2=Nπ where N=0,1,2......
we will have maxima
d2ydx2<0 for maxima
⇒2Acos2x<0
Putting value of x
cosnπ2.2<0
only possible if n is odd or n=(2N+1)
so values of x at which function is x = (2N+1)π2