y=[x(x−2)]2=[x2−2x]2
∴dydx=y′=2(x2−2x)(2x−2)=4x(x−2)(x−1)
∴dydx=0⇒x=0,x=2,x=1
The points x=0,x=1, and x=2 divide the real line into four disjoint intervals
i.e., (−∞,0),(0,1),(1,2) and (2,∞).
In intervals (−∞,0) and (1,2) , dydx<0
∴ y is strictly decreasing in intervals (−∞,0) and (1,2)
However, in intervals (0,1) and (2,∞),dydx>0.
∴ y is strictly increasing in intervals (0,1) and (2,∞).
∴ y is strictly increasing for 0<x<1 and x>2.