Find the values of x so that(i) (27)−3×(27)−11=(27)5x+2
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Re-arrange suitably and find the sum in each of the following :
(i)1112+−173+112+−252
(ii)−67+−56+−49+−157
(iii)35+73+95+−1315+−73
(iv) 413+−58+−813+913
(v)23+−45+13+25
(vi) 18+512+27+712+97+−516
Verify the following
(i) −125+27=27+−125
(ii) −58+−913=−913+−58
(iii) 3+−712=−712+3
(iv) 2−7+12−35=12−35+2−7