The correct option is A x=1,4,18
4logx2(√x)+2log4x(x2)=3log2x(x3)
⇒4log2√xlog2(x2)+2log2(x2)log2(4x)=3log2(x3)log2(2x)[∵logba=logalogb]
⇒ 4×12log2(x)log2x−1+4log2(x)2+log2(x)=9log2(x)1+log2(x)[∵logam=mloga&log(ab)=loga+logb&logaa=1]
Let log2x=t. The given equation reduces to
2tt−1+4tt+2=9tt+1
or t=0 or 2t−1+4t+2=9t+1
or 2t+4+4t−4(t−1)(t+2)=9t+1
or t2+t−6=0
or (t+3)(t−2)=0
or t=0,2 0r −3
⇒ x=1,4,18