Find the values of x, which satisfy the inequation:
\(-2 \leq\ \frac{1}{2} - \frac{2x}{3} \leq\ \frac{11}{6}\) , x \(\epsilon\) N.
We have,
\(-2~\leq~(\frac{1}{2})~-~(\frac{2x}{3})~\leq~(\frac{11}{6})\)
\(-2~\leq~(\frac{1}{2})~-~(\frac{2x}{3})~\leq~(\frac{11}{6})\)
\(-12~\leq~3-4x~\leq~11\)
\(\Rightarrow~-12~-3~\leq~3~-~4x~-~3~\leq~11~-~3\)
\(-15~\leq~-4x~\leq~ 8\)
\(15~\geq~4x~\geq~-8\)
\(-8 ~\leq~4x~\leq~15\)
\(-2~\leq~x~\leq~(\frac{15}{4})\)
\(-2~\leq~x~\leq~3(\frac{3}{4})\)
But, \(x~\epsilon~ N\) , i.e \(x~\epsilon~\){1,2,3,4,….}
So, the solution set is {1,2,3}.