The correct option is D y>0∀xϵ(0,4)∪(16,∞)y<0∀xϵ(4,16)y=0∀xϵ{4,16}
Here y=x−6√x+8; let √x=a;⇒y=a2−6a+8
Solving the quadratic in a, we get
a=2 or 4 ⇒ x=4 or 16
Also the co-efficient of a2 is 1 i.e. positive,
⇒ y > 0 ∀ a < 2 & a > 4
⇒ y > 0 ∀ x < 4 & x > 16
And, y < 0 ∀ 2<a<4
⇒ y < 0 ∀ 4 < x < 16
However we assumed a=√x; notice that x can never be negative as √x is not defined for that. Hence the values of a get restricted. The domain of this equation is not Real Number, it’s all non-negative numbers. Therefore
y>0∀xϵ(0,4)∪(16,∞)
y<0∀xϵ(4,16)
y=0∀xϵ{4,16}