Given :
A unbiased die is thrown, then sample space is
S={1,2,3,4,5,6}
Let X be the random variable denoted a number on the thrown. Then
X=1 or 2 or 3 or 4 or 5 or 6
Probability distribution of X are
P(X=1)=16, P(X=2)=16
P(X=3)=16, P(X=4)=16
P(X=5)=16, P(X=6)=16
X123456P(X)161616161616
We know that ,
Mean or expectation of P(xi) is
E(X)=∑ni=1xiP(x)i ...(1)
E(X)=1×16+2×16+3×16+4×16+5×16+6×16
E(X)=216
Now,
E(X2)=12×16+22×16+32×16+42×16+52×16+62×16
E(X2)=916
Variance of X is
Var(X)=E(X2)−(E(X))2
Var(X)=916−(216)2=916−44136
∴Var(X)=3512