Vector equation of a sphere joining the points A and B whose P.V.S. are →a and →b is
(→r−→a).(→r−→b)=0
Here →a=2→i+6→j−7→k and →b=−2→i+4→j−3→k
[→r−(2→i+6→j−7→k)].[→r−(2→i+4→j−3→k)]=0
Cartesian form
Let →r=x→i+y→j2→k
→r−→a=(x−2)→i+(y−6)→j+(z+7)→k
→r−→b=(x+2)→i+(y−4)→j+(z+3)→k
(→r−→a).(→r−→b)=0
(x−2)(x+2)+(y−6)(y−4)+(z+7)(z+3)=0
x2+y2+z2−10y+10z+41=0
Comparing with
x2+y2+z2+2xx+2xy+2xz+d=0
x=0;v=−5;w=5;d=41
centre is (−x,−v,−w)=(0,5,−5)
radius is √x2+v2+w2−d
=√25+25−41=√9=3 units