Here, →n1=^i+^j+^k and →n2=^2i+3^j+4^k
d1=6 and d2=−5
Hence, using the relation →r.(→n1+λ→n2)=d1+λd2 , we get
→r⋅[(^i+^j+^k)+λ(^2i+3^j+4^k)]=6−5λ
⇒→r⋅[(1+2λ)^i+(1+3λ)^j+(1+4λ)^k]=6−5λ ⋯(1)
where, λ is some real number.
Taking →r=x^i+y^j+z^k, we get
(x^i+y^j+z^k).[(1+2λ)^i+(1+3λ)^j+(1+4λ)^k]=6−5λ
⇒(1+2λ)x+(1+3λ)y+(1+4λ)z=6−5λ
⇒(x+y+z−6)+λ(2x+3y+4z+5)=0 ⋯(2)
Given that the plane passes through the point (1,1,1), it must satisfy equation(2), i.e.,
(1+1+1−6)+λ(2+3+4+5)=0
⇒−3+λ(14)=0⇒λ=314
Putting the value of λ in (1), we get
⇒→r⋅[(1+37)^i+(1+914)^j+(1+67)^k]=6−1514
⇒→r⋅(107^i+2314^j+137^k)=6914
⇒→r⋅(20^i+23^j+26^k)=69
Which is the required vector equation of the plane.