(→r−→a).(→b×→c)=0
→n=→b×→c=∣∣ ∣ ∣∣→i→j→k2−11121∣∣ ∣ ∣∣=−3→i−→j+5→k
Therefore, [→r−(→i+→j−2→k)].(−3→i−→j+5→k)=0
Equation of plane is
→r.(3→i−→j+5→k)=−14
Now, →r=3→i−→j−→k+λ(2→i−2→j+→k)
This line intersects the plane,
Therefore, [(3+21)(3+2λ)→i+(−1−2λ)→j(−1+λ)→k].[3→i+→j−5→k]=14
−λ=1
λ=−1
Therefore, Point of intersection is
→i+→j−2→k