y2=8x+8y
⇒y2−8y=8x
⇒y2−2×4×y+42=8x+42
⇒(y−4)2=8x+16
⇒(y−4)2=8(x+2) ....(i)
For replacing origin at point (4,−2), put x+2 and y−4=Y
Y2=8W
⇒Y2=4.2.X ....(i)
Which is of the form of parabola y2=4ax where a=2 and axis X=0
Coordinates of vertex =(0,0), coordinates of focus =(0,−1)
Length of Latus Rectum =4×2=8
for given parabola (i), put value of X and Y in results.
X=0⇒x+2−0⇒x=−2
Y=0⇒y−4=0⇒y=4
Thus coordinates of vertex =(−2,4)
Coordinates of focus
X=0⇒x+2=2,x=0
Y=0⇒y−4=0,y=4
Thus, coordinates of focus =(0,4)
Axis Y=0⇒y−4=0⇒y=4
Latus rectum =4a=4×2=8