The given equation is
4y2+12x−20y+67=0 ⇒y2+30x−5y+674=0
⇒y2−5y=−3x−674 ⇒y2−5y+(52)2=−3x−674+(52)2
⇒(y−52)2=−3x−424 ⇒(y−52)2=−3(x+72)...........(i)
Let x=X−72,y=Y+52............(ii)
Using these relations equation (i) reduces to y2=−3X...........(iii)
This is of the form y2=−4aX On comp0aring We get 4a = 3 ⇒ a = 3/4
Vertex - The coordinates of the vertex are (X = 0, Y = 0)
So the coordinates of the vertex are (−72,52) [PuttingX=0,Y=0in(ii)]