x2+2y=8x−7
x2−8x=−2y−7
⇒x2−2×4×x+42=−2y−7+42
⇒(x−4)2=−2y−7+16
⇒(x−4)2=−2y+9
⇒(x−4)2=−2(y−92) ....(i)
For replacing origin (0,0) at (4,92), put x−4=X and y−92=Y
X2−2Y⇒X2=12×T ....(ii)
This is of the form X2=4ay where a=−12
In parabola X2=4ay
Axis X=0, then x−4=0⇒x=4
Vertex (0,0), then
x−4=0⇒x=4
and y−92=0⇒y=92
Thus vertex is (4,9/2)
Focus (0,−a), then
x−4=0⇒x=4
and y−92=−12⇒y=92−12=4
Thus focus is (4,4).
Latus rectum =4a=4×12=2.