x2−2ax+2ay=0x2−2ax=−2ayx2−2ax+a2=−2ay+a2(x−a)2=−2a(y−a2)
Comparing with the standard equation X2=4AY
Vertex of the parabola is X=0,Y=0
x−a=0,y−a2=0⇒x=a,y=a2(a,a2)
Axis of the parabola is X=0
x−a=0
x=a
Latus rectum of the parabola is |4A|
Here A=−a2
⇒LL′=2a
Focus of the parabola is X=0,Y=A
x−a=0,y−a2=−a2⇒x=a,y=0(a,0)