Given 2 vertices A (-1,4) B(5,2)
And mid point of one side is (0,3)
Let 3rd vertex be (x1,y1)
case I : Join vertex (x1y1) with (-1,4) & M.P is (0,3)
Eq of line =y−43−4=x+10+1⇒−(y−4)=x+1
x=−y+3⇒x1=y1+3
By distance formula = (0,3) is M.P of (-1,4) & (x1y1)
√(0+1)2+(3−4)2=√(x1−0)2+(y1−3)2
1+1=x21+y21−6y1+9
x21+y21−6y1+7=0[∵x1=−y1+3]
(−y1+3)2+y21−6y1+7=0
y21+y21+9−6y1−6y1+7=0
2y21−12y1+16=0→y21−6y1+8=0
y21−2y1−4y1+8=0
y1=4 then x1=−4+3=−1
y1=2 then x1=−2+3=1
so vertex is (1,2) since (-1,4) is already existing
case II :- Join vertex (x1y1) with (5,2) & M.P is(0,3)
eq of line y−23−2=x−50−5⇒−5(y−2)=(x−5)
x=−5y+10+5⇒x1=−5y1+15
By distance formula : (0,3) is M.P of(5,2) &(x1y1)
√(0−5)2+(3−2)2=√(x1−0)2+(y1−3)2
25+1=x21+y21−6y1+9⇒x21+y21−6y1−17=0[∵x1=5y1+15]
(−5y1+15)2+y21−6y1−17=0⇒25y21+225−150y1+y21−6y1−17=0
26y21−156y1+208=0⇒y21−6y1+8=0
y21−4y1−2y1+8=0⇒(y1−4)(y1−2)=0
y1=4 then x1=−5 y1=2 then x1=5
So vertex is (−5,4) since (5,2) is already existing
∴ The third vertex can be either (1,2)or(−5,4)