wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the volume of a tetrahedron whose vertices are A(1,2,3),B(3,2,1),C(2,1,3) and D(1,2,4)

Open in App
Solution

Let ¯a,¯b,¯c,¯d be the position vectors of points A,B,C,D respectively of a tetrahedron.
¯a=^i+2^j+3^k,¯b=3^i+2^j+^k,¯c=2^i+^j+3^k,¯d=^i2^j+4^k
Now,
¯A¯B=¯b¯a=(3^i+2^j+^k)(^i+2^j+3^k)=4^i+4^j2^k¯A¯C=¯c¯a=(2^i+^j+3^k)(2^i+^j+3^k)=3^i^j¯A¯D=¯d¯a=(^i2^j+4^k)(2^i+^j+3^k)=4^j+^k
Volume of a tetrahedron whose coterminus edges are ¯A¯B,¯A¯C,¯A¯Dis16[¯A¯B¯A¯C¯A¯D]
Volume of the tetrahedron
=1642310041=16[4(10)+4(30)2(120)]=16(4+12+24)=16(32)=163
volume of the tetrahedron is =163 cubic units .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon