The volume of a tetrahedron with vertices a,b,c and d is given by
V=|(a−d)⋅((b−c)×(c−d)|6
Thus, for A(1,1,0), B(−4,3,6), C(−1,0,3) and D(2,4,−5)
V=|(−1,−3,5)⋅((−3,3,3)×(−3,−4,8)|6
(−3,3,3)×(−3,−4,8)=∣∣
∣
∣∣^i^j^k−333−3−48∣∣
∣
∣∣
=^i×3×8+^j×3×(−3)+^k×(−3)×(−4)−(−3)×3×^k−(−4)×3×^i−8×(−3)×^j
=36^i+15^j+21^k=(36,15,21)
V=|(−1,−3,5)⋅(36,15,21)|6
V=|(−36−30+105)|6
V=|39|6
V=6.5