Consider the given expression,
⇒5√5x2+30x+8√5
⇒5√5x2+20x+10x+8√5
⇒5√5x2+4.√5.√5x+2.√5√5x+8√5
⇒√5x(x+4√5)+2.√5(x+4√5)
⇒(x+4√5)(√5x+2√5)
When,
(x+4√5)=0
x=−4√5
(√5x+2√5)=0
x=−2
Hence, this is the answer.
Given that x−√5 is a factor of the cubic polynomial x3−3√5x2+13x−3√5 find all the zeroes of the polynomial.