wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients.
1)2ycosx=y2+2c
2) 4x24x+1
3) 6x237x
4) 4u2+8u
5) t215
6) 3x2x4

Open in App
Solution

Part (1)

2ycosx=y2+2c

y2+2c2ycosx=0

y22ycosx+2c=0

Comparing this equation Ay2+By+C=0

Then,A=1,B=2cosx,C=2c

Using, quadratic equation and we get,

y=B±B24AC2A

y=(2cosx)±4cos2x4×1×2c2

y=2(cosx±cos2x2c)2

y=cosx±cos2x2c

y=cosx+cos2x2c&y=cosxcos2x2c

Verify that,

Comparing equation (1) ay2+by+c=0

Then,A=1,B=2cosx,C=2c

Sums of zeros=cofficentofxcofficentofx2

cosx+cos2x2c+cosxcos2x2c=2cosx1

2cosx=2cosx

Product of zeros==constanttermcofficentofx

(cosx+cos2x2c)×(cosxcos2x2c)=2c1

cos2x(cos2x2c)2=2c1

cos2xcos2x+2c=2c

2c=2c


Part (2)

4x24x+1=0

4x2(2+2)x+1=0

4x22x2x+1=0

2x(2x1)1(2x1)=0

(2x1)(2x1)=0

2x=1 2x=1

x=12,12 ans.

Verify that,

Sums of zeros=cofficentofxcofficentofx2

12+12=44

1=1

Product of zeros=constanttermcofficentofx

12×12=14

14=14

Part (3)

6x237x=0

6x27x3=0

6x2(92)x3=0

6x29x+2x3=0

3x(2x3)+1(2x3)=0

(2x3)(3x+1)=0

If, 2x3=0 3x+1=0

x=32,13

Verify that,

Sums of zeros=cofficentofxcofficentofx2

32+(13)=76

76=76

Product of zeros=constanttermcofficentofx

32×13=36

12=12

Part (4)

4u2+8u=0

4u(u+2)=0

If,4u=0 u=0

If,u+2=0 ……u=2

Verify that,

Sums of zeros=cofficentofxcofficentofx2

0+(2)=84

2=2

Product of zeros=constanttermcofficentofx

0×(2)=04

0=0

Part (5)

t215=0

t2=15

t=±15

Verify that,

Sums of zeros=cofficentofxcofficentofx2

1515=01

0=0

Product of zeros=constanttermcofficentofx

15×15=151

15=15

Part (6)

3x2x4=0

3x2(43)x4=0

3x24x+3x4=0

x(3x4)+1(3x4)=0

(3x4)(x+1)=0

If,3x4=0 x=43

If,x+1=0 x=1

Verify that,

Sums of zeros=cofficentofxcofficentofx2

43+(1)=13

13=13

Product of zeros=constanttermcofficentofx

43×(1)=43

=43


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon