Part (1)
2ycosx=y2+2c
⇒y2+2c−2ycosx=0
⇒y2−2ycosx+2c=0
Comparing this equation Ay2+By+C=0
Then,A=1,B=−2cosx,C=2c
Using, quadratic equation and we get,
y=−B±√B2−4AC2A
y=−(−2cosx)±√4cos2x−4×1×2c2
y=2(cosx±√cos2x−2c)2
y=cosx±√cos2x−2c
y=cosx+√cos2x−2c&y=cosx−√cos2x−2c
Verify that,
Comparing equation (1) ay2+by+c=0
Then,A=1,B=−2cosx,C=2c
Sums of zeros=−cofficentofxcofficentofx2
cosx+√cos2x−2c+cosx−√cos2x−2c=−−2cosx1
2cosx=2cosx
Product of zeros==constanttermcofficentofx
(cosx+√cos2x−2c)×(cosx−√cos2x−2c)=2c1
⇒cos2x−(√cos2x−2c)2=2c1
⇒cos2x−cos2x+2c=2c
⇒2c=2c
Part (2)
4x2−4x+1=0
⇒4x2−(2+2)x+1=0
⇒4x2−2x−2x+1=0
⇒2x(2x−1)−1(2x−1)=0
⇒(2x−1)(2x−1)=0
⇒2x=1 2x=1
⇒x=12,12 ans.
Verify that,
Sums of zeros=−cofficentofxcofficentofx2
12+12=−−44
1=1
Product of zeros=constanttermcofficentofx
12×12=14
14=14
Part (3)
6x2−3−7x=0
⇒6x2−7x−3=0
⇒6x2−(9−2)x−3=0
⇒6x2−9x+2x−3=0
⇒3x(2x−3)+1(2x−3)=0
⇒(2x−3)(3x+1)=0
If, 2x−3=0 3x+1=0
x=32,−13
Verify that,
Sums of zeros=−cofficentofxcofficentofx2
32+(−13)=−−76
76=76
Product of zeros=constanttermcofficentofx
32×−13=−36
−12=−12
Part (4)
4u2+8u=0
⇒4u(u+2)=0
⇒If,4u=0 u=0
If,u+2=0 ……u=−2
Verify that,
Sums of zeros=−cofficentofxcofficentofx2
0+(−2)=−84
−2=−2
Product of zeros=constanttermcofficentofx
0×(−2)=04
0=0
Part (5)
t2−15=0
⇒t2=15
⇒t=±√15
Verify that,
Sums of zeros=−cofficentofxcofficentofx2
√15−√15=−01
0=0
Product of zeros=constanttermcofficentofx
√15×−√15=−151
−15=−15
Part (6)
3x2−x−4=0
⇒3x2−(4−3)x−4=0
⇒3x2−4x+3x−4=0
⇒x(3x−4)+1(3x−4)=0
⇒(3x−4)(x+1)=0
If,3x−4=0 x=43
If,x+1=0 x=−1
Verify that,
Sums of zeros=−cofficentofxcofficentofx2
43+(−1)=−−13
13=13
Product of zeros=constanttermcofficentofx
43×(−1)=−43
=−43