Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:- i)2√2x2−9x+5√3 ii)3√3x2−19x+10√3.
Open in App
Solution
i) Given quadratic equation is
2√2x2−9x+5√3=0
Using quadratic formula:
α=−b+√D2a and β=−b−√D2a
where D=b2−4ac=(−9)2−4(2√2)(5√3)=81−40√6=(−ve)
Hence, root of above quadratic equation will be imaginary.
∴, no real root exists.
ii) Given the quadratic equation is
3√3x2−19x+10√3=0
Discriminant (D)=b2−4ac
x=−b±√D2a=19±16√3
α=186√3=√3 & β=206√3=103√3
Sum of roots =α+β=√3+103√3=193√3
α+β=−(−19)3√3=−(Coefficient of x)(Coefficient ofx2)
Product of roots =α.β=√3.103√3=10√33√3
α.β=Constant termCoefficient ofx2
Hence, the relationship between the zeroes and the coefficients is verified.