Let p(x)=x3−23x2+142x−120
Integral zeroes of 120 are
±1,±2,±3,±4,±5,±6,±8,±10,±12,±15 and ±20.
Here we go for only positive value, because negative value will be give only negative result.
∴p(1)=(1)3−23(1)2+142(1)−120
=1−23+142−120
=143−143=0
⇒1 is a zero of p(x).
p(10)=(10)3−23(10)2+142(10)−120
=1000−23000+1420−120
=2420−2420=0
⇒10 is a zero of p(x).
p(12)=(12)3−23(12)2+142(12)−120
=1728−3312+1704−120
=3432−3432=0
⇒−12 is a zero of p(x).
Hence, 1,10 and 12 are zeroes of p(x).