Let p(x)=x4−2x3−7x2+8x+12
Integral zeroes of p(x) are ±1,±2,±3,±4,±6,±12
∵ Positive term have more values. So we go for negative values first
p(−1)=(−1)4−2(−1)3−7(−1)2+8(−1)+12
=1+2−7−8+12=15−15=0
⇒−1 is a zero of p(x).
Also
p(−2)=(−2)4−2(−2)3−7(−2)2+8(−2)+12
=16+16−28−16+12
=44−44=0
⇒−2 is a zero of p(x).
Also
p(2)=(2)4−2(2)3−7(2)2+8(2)+12
=16−16−28+16+12=0
⇒2 is a zero of p(x).
Similarly
Also
p(3)=(3)4−2(3)3−7(3)2+8(3)+12
=81−54−63+24+12
=117−117=0
⇒−1,−2,2 and 3 are the zeroes of p(x).