i) f(x)=x2−2x−8
=(x−4)(x+2)
Zeroes: −2,4
Sum of zeroes: −2+4=2
Product of zeroes:−2(4)=−8
ii) g(s)=4s2−4s+1
=(2s−1)2
Zeroes:12,12
Sum of zeroes : 12+12=−ba=−(−4)4=1
Product of zeroes:12⋅12=ca=14
ii)h(t)=t2−15=(t−√15)(t+√15)
Sum of zeroes: √15+(−√15)=0
Product of zeroes: (√15)(−√15)=−15=ca
iv) 6x2−3−7x
Zeroes : 32,−13
Sum of zeroes:32−13=76=−ba
Product of zeroes: 32−13=−36=ca
v) p(x)=x2+2√2−6
=(x−√6−2√2)(x+√6−2√2)
Zeroes: −√6−2√2,√6−2√2
Sum of zeroes:√6−2√2−√6−2√2=0=−ba
Product of zeroes: (√6−2√2)(−√6−2√2)=−6+2√2=ca
vi) q(x)=√3x2+10x+7√3
Zeroes:−√3,−7√3
Sum of zeroes: −(√3+7√3)=−10√3=−ba
Product of zeroes: (−√3)(−7√3)=7=7√3√3=ca
vii) f(x)=x2−(√3+1)x+√3
Zeroes: 1,√3
Sum of zeroes: 1+√3=ca
Product of zeroes: 1×√3=√3=ca
viii)g(x)=a(x2+1)−x(a2+1)=ax2−(a2+1)x+a
Zeroes: a,1a
Sum of zeroes: a+1a=(a2+1)a=b′c′
Product of zeroes: a×1a=1=aa=c′a′