wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their coefficients :
(i) f(x)=x22x8
(ii) g(s),=4s24s+1
(iii) h(t)=t215
(iv) 6x237x
(v) p(x)=x2+226
(vi) q(x)=3x2+10x+73
(vii) f(x)=x2(3+1)x+3
(viii) g(x)=a(x2+1)x(a2+1)

Open in App
Solution

i) f(x)=x22x8
=(x4)(x+2)
Zeroes: 2,4
Sum of zeroes: 2+4=2
Product of zeroes:2(4)=8

ii) g(s)=4s24s+1
=(2s1)2
Zeroes:12,12
Sum of zeroes : 12+12=ba=(4)4=1
Product of zeroes:1212=ca=14

ii)h(t)=t215=(t15)(t+15)
Sum of zeroes: 15+(15)=0
Product of zeroes: (15)(15)=15=ca

iv) 6x237x
Zeroes : 32,13
Sum of zeroes:3213=76=ba
Product of zeroes: 3213=36=ca

v) p(x)=x2+226
=(x622)(x+622)
Zeroes: 622,622
Sum of zeroes:622622=0=ba
Product of zeroes: (622)(622)=6+22=ca

vi) q(x)=3x2+10x+73
Zeroes:3,73
Sum of zeroes: (3+73)=103=ba
Product of zeroes: (3)(73)=7=733=ca

vii) f(x)=x2(3+1)x+3
Zeroes: 1,3
Sum of zeroes: 1+3=ca
Product of zeroes: 1×3=3=ca

viii)g(x)=a(x2+1)x(a2+1)=ax2(a2+1)x+a
Zeroes: a,1a
Sum of zeroes: a+1a=(a2+1)a=bc
Product of zeroes: a×1a=1=aa=ca

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon