Let f(u)=4u2+8u
To calculate the zeros of the given equation, put f(u)=0.
4u2+8u=0
4u(u+2)=0
u=0,u=−2
The zeros of the given equation is 0 and −2.
Sum of the zeros is 0+(−2)=−2.
Product of the zeros is 0×−2=0.
According to the given equation,
The sum of the zeros is,
−ba=−(8)4
=−2
The product of the zeros is,
ca=04
=0
Hence, it is verified that,
sumofzeros=−coefficientofxcoefficientofx2
And,
productofzeros=constanttermcoefficientofx2