Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients :
2√3x2−5x+√3
2√3x2−5x+√3=0
2√3x2−(3+2)x+√3=0
2√3x2−3x−2x+√3=0
√3x(2x−√3)−1(2x−√3)=0
(2x−√3)(√3x−1)=0
then
2x−√3=0
x=√32
and √3x−1=0
x=1√3
Zeroes are √32 and 1√3
Sum of zeros −ba=−(−5)2√3=52√3
Sum of zeros √32+1√3=3+22√3=52√3
Product of zeros ca=√32√3=12
Product of zeros √32×1√3=12
hence proved that
Sum of zeros −(Coefficient of x)Coefficient of x2
Product of zeros Constant termCoefficient of x2