Find the zeros of the polynomial x2−3x−m(m+3).
Say f(x)=x2−3x−m(m+3)
By adding and subtracting mx, we get
f(x)=x2−mx−3x+mx−m(m+3)
=x(x−m−3)+m(x−m−3)
∴f(x)=(x−m−3)(x+m)
Thus, f(x)=0
⇒(x−m−3)(x+m)=0
⇒x−m−3=0, x+m=0
⇒x=m+3,x=−m
Therefore, the zeros of given function x2−3x−m(m+3) are −m and m+3.