wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find θ:
32cosθ4sinθcos2θ+sin2θ=0

Open in App
Solution

32cosθ4sinθ(12sin2θ)+2sinθcosθ=0
2sin2θ4sinθ+22cosθ+2sinθcosθ=0
(sin2θ2sinθ+1)+cosθ(sinθ1)=0
(sinθ1)2+cosθ(sinθ1)=0
(sinθ1)(sinθ1)+cosθ)=0
sinθ=1=sinπ2
θ=nπ+(1)nπ2
cosθ+sinθ=1
Divide by 1+1=2
1(2)cosθ+1(2)sinθ=1(2)
or cosθcosπ4+sinθsinπ4=1(2)
or cos(θπ4)=cosπ4
θπ4=2nπ±π4
θ=2nπ or 2nπ+π4+π4=2nπ±π2
We could also write it as
sin(θ+π4)=1(2)=sinπ4
θ+π4=nπ+(1)nπ4
=nπ+(1)nπ4π4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon