3−2cosθ−4sinθ−(1−2sin2θ)+2sinθcosθ=0
2sin2θ−4sinθ+2−2cosθ+2sinθcosθ=0
(sin2θ−2sinθ+1)+cosθ(sinθ−1)=0
(sinθ−1)2+cosθ(sinθ−1)=0
∴(sinθ−1)(sinθ−1)+cosθ)=0
sinθ=1=sinπ2
∴θ=nπ+(−1)nπ2
cosθ+sinθ=1
Divide by √1+1=√2
1√(2)cosθ+1√(2)sinθ=1√(2)
or cosθcosπ4+sinθsinπ4=1√(2)
or cos(θ−π4)=cosπ4
∴θ−π4=2nπ±π4
∴θ=2nπ or 2nπ+π4+π4=2nπ±π2
We could also write it as
sin(θ+π4)=1√(2)=sinπ4
∴θ+π4=nπ+(−1)nπ4
∴=nπ+(−1)nπ4−π4.