√3cosθ−3sinθ=4sin2θ.cos3θ⇒√3cosθ−3sinθ=2(2sin2θ.cos3θ)−(1)We know that
2sinA.cosB=sin(A+B)+sin(A−B)
Using this we can reduce (1) as
⇒√3cosθ−3sinθ=2(sin5θ+sin(−θ))⇒√3cosθ−3sinθ=2sin5θ−2sinθ(∵sin(−θ)=sinθ)⇒√3cosθ−sinθ=2sin5θ⇒√32cosθ−12sinθ=sin5θ⇒cosπ6cosθ−sinπ6sinθ=sin5θ−(2)
We know that
cosA.cosB−sinA.sinB=cos(A+B)
Using this we can further reduce (2)
⇒cos(θ+π6)=sin5θ⇒cos(θ+π6)=cos(π2−5θ)−(3)
We know that the general solution of
cosθ=cosα is given by θ=2nπ±α
Hence the general solution of (3) is
θ+π6=2nπ±(π2−5θ)θ+π6=2nπ+π2−5θ;θ+π6=2nπ−π2+5θ⇒6θ=2nπ+π2−π6;⇒−4θ=2nπ−π2−π6⇒θ=nπ3+π18;⇒θ=π6−nπ2