wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find θ if 3cosθ - 3sinθ = 4sin2θ.cos3θ

Open in App
Solution

3cosθ3sinθ=4sin2θ.cos3θ3cosθ3sinθ=2(2sin2θ.cos3θ)(1)
We know that
2sinA.cosB=sin(A+B)+sin(AB)
Using this we can reduce (1) as
3cosθ3sinθ=2(sin5θ+sin(θ))3cosθ3sinθ=2sin5θ2sinθ(sin(θ)=sinθ)3cosθsinθ=2sin5θ32cosθ12sinθ=sin5θcosπ6cosθsinπ6sinθ=sin5θ(2)
We know that
cosA.cosBsinA.sinB=cos(A+B)
Using this we can further reduce (2)
cos(θ+π6)=sin5θcos(θ+π6)=cos(π25θ)(3)
We know that the general solution of
cosθ=cosα is given by θ=2nπ±α
Hence the general solution of (3) is
θ+π6=2nπ±(π25θ)θ+π6=2nπ+π25θ;θ+π6=2nππ2+5θ6θ=2nπ+π2π6;4θ=2nππ2π6θ=nπ3+π18;θ=π6nπ2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon