The correct option is B θ=nπ where n is an integer.
Let, z=3+2isinθ1−2isinθ
=3+2isinθ1−2isinθ×1+2isinθ1+2isinθ
=3+2isinθ+6isinθ+4i2sin2θ1−4i2sin2θ
=3+8isinθ−4sin2θ1+4sin2θ,[∵i2=−1]
=3−4sin2θ1+4sin2θ+i8sinθ1+4sin2θ
Now for z to be real, we must have,
8sinθ1+4sin2θ=0⇒sinθ=0
⇒θ=nπ, where n∈Z