tan(π2sinθ)=cot(π2cosθ)
∴tan(π2sinθ)=tan(π2−π2cosθ)
∴π2sinθ=nπ+π2−π2cosθ
∴sinθ+cosθ=2n+1
Divide by √1+1
1√(2)sinθ+1√(2)cosθ=2n+1√(2)
cos(θ−π4)=2n+1√(2)=cosα, say
θ−π4=2rπ±α
∴θ=2rπ+π4±cos−12n+1√(2)
where n=0 or −1 only as cosα≤1;r∈I
∴θ=2rπ+π/4±π/4
or 2rπ+π/4±3π/4
∵cos−1(−1√2)=3π4,r∈I.
Hence the only solution is θ=2rπ or 2rπ+π. We reject other values as they will lead to ∞=∞.