Find to the three places of decimals the radius of the circle whose area is the sum of the areas of two triangles whose sides are 35,53,66 and 33,56,65 measured in centimetres. (Use π=227).
Open in App
Solution
For the first triangle, we have
a=35 , b=53 and c=66
∴s=a+b+c2=35+53+662=77cm
now , Δ1 = Area of the first triangle
⇒Δ1=√s(s−a)(s−b)(s−c)
⇒Δ1=√77(77−35)(77−53)(77−66)=√77×42×24×11
√7×11×7×6×6×4×11=√72×112×62×22
⇒Δ1=7×11×6×2=924cm2
For the second triangle , we have
a=33,b=56,c=65
∴s=a+b+c2=33+56+652=77cm
Area of the second triangle
⇒Δ1=√s(s−a)(s−b)(s−c)
⇒Δ1=√77(77−33)(77−56)(77−65)=√77×44×21×12
⇒Δ1=√7×11×4×11×3×7×3×7
⇒Δ1=√72×112×42×32=7×11×4×3=924cm2
Let r be the radius of the circle . Then Area of the circle = sum of the area of two triangles Area related to circles